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DNA Data Storage
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« Holden, Lyons (2018); Chase (2019):
 Improved lower bounds: Q(n3/?) traces needed
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Trace Reconstruction
unknown worst-case string n bits

X OO V-0~
(DO o-(H0~H0) ~n/2 Deletion channel, probability g=0.5

(0-0)H0)H0)H{0)+0)0)  Goal: Recover X exactly

w.h.p. using min # traces T,

. 1/3\ [Nazarov, Peres '16;
Known: Tn < eXp(TL ) De, O’'Donnell, Servedio '16]

G200 20 T, > SNl(n3/2) [Holden, Lyons '18;

Chase '19]

Take away: huge gap between upper and lower
bound! New ideas needed to improve upper bound



Trace Reconstruction Variants

] o : [Cheraghchi, Gabrys, Milenkovic, Ribeiro '19;
coded TR: encoded initial string X Brakensiek. Li. Spang ‘1]

1
e average-case: X random = eXp((log n) /3) [Peres-Zhai '17; Holden, Pemantle, Peres ‘18]

« population recovery: multiple unknown strings [Ban, Chen, Freilich, Servedio, Sinha ‘19]

- matrix version: delete random rows/cols [Krishnamurthy, Mazumdar, McGregor, Pal ‘19]
« fixed # deletions: e.g., 1, 2, 3, ... [Levenshtein '01; Gabrys, Yaakobi ‘18]
« Tree TR: reconstruct labelled trees [Davies, Racz, Rashtchian ‘19]

Deterministic Variants

. k-deck: reconstruct from all k-substrings k& < O(y/n) [Krasikov, Roditty ‘97]

- Graph Reconstruction Conj: all (n-1)-vertex subgraphs? [Kelly ’57; Ulam ‘60]



Trace Reconstruction Variants

coded TR: encoded initial string X

. average-case: X random > exp((logn)'/?) We'll come back
to these later!

« population recovery: multiple unknown strings
- matrix version: delete random rows/cols

« fixed # deletions: e.g., 1, 2, 3, ...

« Tree TR: reconstruct labelled trees

Deterministic Variants
. k-deck: reconstruct from all k-substrings k& < O(y/n)

- Graph Reconstruction Conj: all (n-1)-vertex subgraphs?
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Generalization to Trees

(a) Original Tree

(b) TED Trace

(c¢) Left-Propagation Trace

left propagation model
left child moves up

degree never increases



Why trees?

(a) Original Tree (b) TED Trace (c) Left-Propagation Trace
1 1 0 1 1 0 1
0 1 0 0 1)(0 0)(0)(1)(0 1 1 0 1
1)(0) 0 (0)(0)(1)(1)(0 0)(1 0 0 0)(1 0

(Kind of, maybe) Practical interest i
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Why trees?

(a) Original Tree (b) TED Trace (¢) Left-Propagation Trace
1 1 0 1 1 0 1
0 1 0 0 1)(0 0)(0)(1)(0 1 1 0 1
1)(0) 0 (0)(0)(1)(1)(0 0)(1 0 0 0)(1 0

Theoretical interest

How does the addition of combinatorial structure allow us to move away from purely
analytic methods (aka mean-based algorithms) in finding upper bounds for TR?
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(Generalization to Trees

a@@aa‘@@@a@@

Tree Edit Distance (TED) Model Deletion channel, probability 0.5
Goal: Recover X w.h.p. using min # traces




(Generalization to Trees

Tree Edit Distance (TED) Model Vertex Deletion > Children Move Up
(fixed root)
()




(Generalization to Trees

Fixed root w.l.0.g. 2 sample more traces
Consistent planar embedding (left-right)
Random tree “close” in Tree Edit Distance

Equivalent: contract edge, keep parent’s label

Tree Edit Distance (TED) Model Vertex Deletion > Children Move Up
(fixed root)
()
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Our Results

unknown worst-case tree X with n vertices
deletion probability ¢ € (0,1)

# traces for spiders

d = alog/,(n) a€(0,1)

Previously exp (5 (nl_@))

Our Result exp (5 (n%))

Theorem 3 exp (O (n/%%*)) traces (n, d)-spider
to reconstruct (n,d)-spiders d < log; ,(n) n/d paths
depth d
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Spider Trees

(n,d)-spider

depth d

n/d paths



Spider Trees
Easy regime: depth d > log(n)

(n, d)-spider only keep traces with n/d paths
HON

OO O 0000 for each, use string TR

00000 OCQ T, < exp(d/?)
depthd O O O O O O O

O O O O O 0O O

O O O O O O O
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n/d paths



Spider Trees

3
=

-spider

< ("f\;[y(/‘ 0)

depth d
Hard regime: depth d < log(n)

n/d paths



Spider Trees

d > log(n)
(n,d)-spider 0/
(2
ONORORORORON®
O O O 0 0O O C T, < exp(d/3)
depthd © O O O O O O |

QQOQQOQQQ Hard regime: depth d < log(n)
ONORORORORONS®
O O OO O O O Full paths deleted

n/d paths

Theorem 3 exp (5 (nl/gfld/g)) traces
Deletion prob 0 < ¢ <0.7 to reconstruct (n,d)-spiders d <log; ,(n)
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(n,d)

Theorem 3 exp (5 (nl/qu/g» traces n/d
n,d)

to reconstruct (n,d)-spiders d <log; /,(n)
Mean-based Algorlthm [Nazarov-Peres '16; De, O'Donnell, Servedio '16]

Xlvs. X? 3 j such that average of ;™ bit of trace
differs by exp(—L) = exp(O(L)) traces suffice

union bound over all pairs of spiders
for every pair of spiders, da coordinate where in expectation traces look different

mean of this coordinate over traces tells us which of pair is more likely to be X
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_ (n,d)
Theorem 3 exp (O (nl/qu/3)> traces n/d
to reconstruct (n,d)-spiders d <log; /,(n)

Mean-based Algorlthm [Nazarov-Peres '16; De, O'Donnell, Servedio '16]

Xlvs. X? 3 j such that average of ;™ bit of trace
differs by exp(—L) = exp(O(L)) traces suffice

Strings: easy to determine how original bits affect trace @

~~

Spiders: more complicated “two-dimensional” \\‘?9

Zam

General trees: no idea... (L S



(n, d)-spider
n/d paths

Theorem 3 exp (5 (nl/qu/?’)) traces
. d) depth d

to reconstruct (n,d)-spiders d <log; /,(n)

Generating function

w e C



(n,d)-spider

Theorem 3 exp (5 (nl/qu/g)) traces n/d paths
to reconstruct (n,d)-spiders d <log, ,(n) depth d
Generating function original labels @ = ag, aq,...,a, 1  °F>indexing

w e C trace labels b =1by,b1,...,b0,,0,...,0

'y Yml



(n,d)-spider

Theorem 3 exp (5 (nl/qu/g)) traces n/d paths
to reconstruct (n,d)-spiders d <logy /4(n) depth d
Generating function original labels a = ag,ay,...,a, 1 P> indexing
w e C trace labels b =bg,b1,...,0,7,0,...,0

0 by
e o7 @10 by




(n,d)-spider

Theorem 3 exp (5 (nl/qu/g)) traces n/d paths
to reconstruct (n,d)-spiders d <logy /4(n) depth d
Generating function original labels a = ag,ay,...,a, 1 P> indexing
w e C trace labels b =bg,b1,...,0,7,0,...,0

n—1
A(w) =3 ijw]
J=0 0 b
Lo 4 o7 @10 by
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- (5 (nl /3 qd/.:})) (n, d)

n/d
<n’d> d < logl/(1<n> J
Generating function original labels @ = ag, aq,...,a, 1  DPFSindexing
w e C trace labels b =bg,b1,...,0,7,0,...,0

n—1

n—1
Aw) =E (Z bjwj> = (1-¢) Y alg+ (1 — @)’ @D (¢ 1+ (1 - ¢?)uwhla
§=0

(=0



(n, d)

(A 1/3 d/3
exp (O (n/ q )) n/d
(n, d) d < log /,(n) ]
Generating function original labels @ = ag, aq,...,a, 1  DPFSindexing
w e C trace labels b =bg,b1,...,0,7,0,...,0

n—1

n—1
A(w> =1 (Z bjwj> = (1 — q) Z ae(q + (1 — q)w)ﬁ (mod d) (qd i (1 B qd)wd) L%J
Jj=0

(=0



(n,d)-spider

~(.1/3 d/3
'[heoremtB eXf (0 gfl q'd )) traces n/d paths
O reconstruct (n,a)-splaers d <lI1
(@)-sp < logi/g() depth d
Generating function original labels a = ag,ay,...,a, 1 P> indexing
w e C trace labels b= by, by,...,0,/,0,...,0

(=0

n—1 n—1 |
Alw) :=E (Z bjwj> = (1—gq) Z ar(qg+ (1 — C])”(U)g (mod d) (qd +(1 - qd>wd)L§J
=0

Xlys. X2

® CL::CH'—‘QQ

o h=p —p?



~ (n,d)-spider
Theorem 3 exp (0 (n1/3qd/3)) e

: truct (n, d)-spid n/d paths
o reconstruct (n,d)-spiders d <1

e P i Ogl/q(”) depth d
Generating function original labels @ = ag, aq,...,a, 1  DPFoindexing
w e C trace labels b= by, by,...,0,/,0,...,0

n—1 n—1
(w):=E (Z bjw > (1 —q) Z ar(q + (1 — q)w)?t med D (gd 4 (1 — ([(1>'l,l,’(1)L(L[J
(=0
i « Jut=1
X1vs. X2 Main Lemma 3 w w | =
R A(w*)] 2 expl(—L)

o h=1p —? L:’é(nl/?)qd/B)



Theorem 3 exp (5 (nl/qu/g)) traces
to reconstruct (n,d)-spiders d <log;,(n)

Generating function

w e C
n—1
(w) :=E (Ezzb wr >
X'vs. X?
o a:al—aQ
o h=0bl -1

(n, d)-spider

n/d paths
depth d
original labels a =aq,ay,...,a,_1 DFS indexing
trace labels b= by, b1,...,0,,0,...,0

n—1

1 — (1) Z ay ((] + (1 . (j)'l_l’>[ (mod d) ((1(/ + (1 B (jd)'l_l_,’d> L:—/J

(=0

S
Main Lemma 3o* (W | =1
[A(w*™)| > exp(—L) = exp(O(L)) traces suffice

=0 (n1/3 qd/S)



Theorem 3 exp (5 (nl/qu/g)) traces
to reconstruct (n,d)-spiders d <log; ,(n)

Generating function

w e C
n—1
(w :E(Zb W )
X'vs. X?
o a:al—aQ
o h=0bl — 1

(n, d)-spider

n/d paths
depth d
original labels a =aq,ay,...,a,_1 DFS indexing
trace labels b= by, b1,...,0,7,0,...,0

n—1

1 — ([) Z (_'u(q + <1 . (-[>U.’)( (l]il(j)(jl (j/) ((j(/ + <1 o (_j(/>u_»(/>L%J

(=0

Main Lemma 3 u* Littlewood-like polynomials

|A(w™*)| > exp(—L) Inspired by
[Borwein and Erdélyi '97]

(.. 1/3 .d/3
L=0 (n / q / ) [Hartung, Holden, Peres '18]



Theorem 1 exp (klogin) traces original tree

to reconstruct complete k-ary trees
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original tree

Proof: partition X into subtrees

Lemma

if trace contains caterpillar, then
subtree labels are usually correct

trace




original tree

Proof: partition X into subtrees

Lemma

if trace contains caterpillar, then
subtree labels are usually correct

trace

Labels correct with prob > 2/3

Majority vote O(log n) traces




Theorem 2 exp (k1/3 + logy. n) traces When kis large, Theorem 1 is

to reconstruct complete k-ary trees expensive (vv_ait a long time to see a
if k> clog(n) trace preserving a caterpillar)
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original tree

Theorem 2 exp (k1/3 + log;. n) traces

to reconstruct complete k-ary trees
if k> clog’(n)

Proof: cover X by subtrees

Lemma l

if trace contains P, we can find w.h.p.
positions of all internal nodes in P

P survives with prob. exp (—d) = exp (— logz. n)



Lemmal

it trace contains P, we can find w.h.p.
positions of all internal nodes in P trace

ldea: estimate # deleted nodes at every level,
concentrates well because kis large!

o

P survives with prob. exp (—d) = exp (— logy. n)



original tree
Theorem 2 exp (kl/g + log;. n) traces
to reconstruct complete k-ary trees P
if k> clog’(n)
Proof: cover X by subtrees

Lemmal
it trace contains P, we can find w.h.p.

positions of all internal nodes in P trace
Lemma 2
Reconstruct k leaves w.h.p. using T}, traces

T < exp (kl/B)

P survives with prob. exp (—d) = exp (— logz. n)



Trace Reconstruction Variants

] o : [Cheraghchi, Gabrys, Milenkovic, Ribeiro '19;
coded TR: encoded initial string X Brakensiek. Li. Spang ‘1]

1
e average-case: X random = eXp((log n) /3) [Peres-Zhai '17; Holden, Pemantle, Peres ‘18]

« population recovery: multiple unknown strings [Ban, Chen, Freilich, Servedio, Sinha ‘19]

- matrix version: delete random rows/cols [Krishnamurthy, Mazumdar, McGregor, Pal ‘19]
« fixed # deletions: e.g., 1, 2, 3, ... [Levenshtein '01; Gabrys, Yaakobi ‘18]
« Tree TR: reconstruct labelled trees [Davies, Racz, Rashtchian ‘19]

Deterministic Variants

. k-deck: reconstruct from all k-substrings k& < O(y/n) [Krasikov, Roditty ‘97]

- Graph Reconstruction Conj: all (n-1)-vertex subgraphs? [Kelly ’57; Ulam ‘60]
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Average case

Assume X is drawn uniformly at random from {0,1}”

Know exp(logl/3(n)) traces suffice
Can’t improve avg. case upper bound w/out also improving worst case upper bound

Coded TR

Design codes which require less traces to reconstruct
Recently shown to be roughly equivalent to Average case TR

Population recovery

Multiple unknown strings to learn
Algorithm observes traces, but doesn’t know which original string they are from
When strings are random, this is just a clustering problem, then avg. case result applies



What's up with the A-deck?”

The k~deck of a string X is the multi-set of all length A substrings
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What's up with the A-deck?”

The k~deck of a string X is the multi-set of all length A substrings
Strings with the same A-deck are A~equivalent
K-decks are unique when & >Cn??2. Improvements here very interesting

The A~deck & TR

Lower bounds for TR distinguish between strings with small hamming distance (4).
However...

[T strings X and Y are k-equivalent then their hamming distance is =2k.

The k-deck of a binary string X can be determined exactly with exp(O(klog(n))) traces

So, we already know that we can distinguish between strings with small Hamming
distance using only traces from the deletion channel.
Are there better lower bounds using strings whose hamming distance is say, log(n).



Other Open Questions

Families of graphs needing only  polylog(thces?

« Approximate TR let «n bits of string be incorrect.
« More practical deletion models for string TR (burst insertions/ deletions)
 Other useful structure for trace reconstruction?

« Applications for Tree TR to computational biology or sensors or ... ?
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